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Abstract 

The selfconsistent theory of X-ray-phonon coupling 
near a symmetric two-beam Bragg reflection is 
developed for single-phonon transitions, in the 
dynamical angular region where both the initial and 
final states may be two-beam modes. Explicit results 
are obtained for an incident-beam direction close to 
but not at the Bragg angle. Selection rules for transi- 
tions between various branches of the dispersion sur- 
faces, based on boundary conditions for internally 
excited modes, and influenced by primary extinction, 
lead to the kinematically expected maximum in TDS 
on the opposite side of the Bragg angle as the 
specularly reflected beam, but also introduce addi- 
tional dynamical effects that, in particular, suppress 
phonon coupling into the angular region of total 
reflection. The results are compared with earlier 
theories, and with two experiments using very small 
angular offsets from the Bragg angle for the incident 
beam. They offer a detailed interpretation for defect 
lines observed in TDS when this angular offset is 
large enough so that the incident beam produces no 
comparable elastic scattering into the region of total 
reflection. 

1. Introduction 

The first-order interaction of X-rays with thermal 
phonons leads to the well known thermal diffuse 
scattering (TDS) accompanying X-ray diffraction. 
TDS peaks in intensity whenever the scattering vector 

Q = K f - K o  (1) 

connecting the incident wave vector Ko and the scat- 
tered wave vector Ky is in the neighborhood of a 
reciprocal-lattice vector H. For low-enei~v phonons 
of wave vector q, Ko and Kf belong tc Urays of 
essentially the same energy, and conservation of 
momentum requires 

Q = H + q .  (2) 

At normal temperatures, the scattering for given Q 
into an element dqx dqv dq~ is proportional to (e.g. 
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Willis & Pryor, 1975) 

IQI21FQI2( ks T/qE)(g2/v2), (3) 

where Vp is a phonon velocity and (gE/v2) is the 
contribution of 1/v~ from the three acoustic branches 
weighted according to the projection g of their mode 
amplitudes along Q. The structure factor F includes 
a Debye-Waller factor appropriate to Q. For very 
small q, Q-~H, and (3) exhibits the conventional 
divergence of TDS as q goes to zero. 

In a symmetric two-beam Bragg configuration, 
however, where one samples the output at different 
angles 0ou t for a fixed angle of incidence 0i, away 
from the Bragg angle (here we measure all angles 
relative to the Bragg angle 0B), the observed TDS 
output has a different q dependence, q never goes to 
zero, but instead reaches a minimum, which, 
according to kinematic theory (e.g. Eisenberger, 
Alexandropoulos & Platzman, 1972), occurs when 

0out = - 0in COS 2 0~. (4) 

In addition, since in such an experiment the detec- 
tor usually covers a wide angular range of exit angles 
in the direction normal to the plane of incidence, a 
given 0out samples all phonons with arbitrary com- 
ponents of q normal to this plane (Iida & Kohra, 
1979). Hence, instead of (3), the observed TDS should 
show a 1/qo dependence, where q0 is the common 
component in the plane of incidence of all contribut- 
ing q. This dependence is shown in Fig. 1 as a function 
of 0out for two values of 0in, for the 220 reflection of 
Ge, based on the expression 

qg=2 2 k (0out+ 02  + 2  COS 20B0out0in), (5) 

where k=27r/A. The O's in (5) and in the theory 
below are measured in radians, b u t  in all graphs, 
especially those relating to experiments, the corre- 
sponding 0 is conveniently expressed in seconds of 
arc (s or "). Equation (5) follows from the conserva- 
tion requirement that qo must connect two points on 
the kinematic dispersion surfaces at constant energy, 
in the plane of incidence, as shown in Fig. 2(a). 

The angles 0 in Fig. 1 were chosen for comparison 
with the experimental data of Eisenberger et al. 
(1972), from now on designated as EAP, who 
attempted to apply the above Oin-Offset method to 
study very-long-wavelength phonons. With a 
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grooved-crystal collimator for restricting the diver- 
gence of the incident beam, they were able to identify 
the maxima of Fig. 1 as roughly obeying (4) in the 
range 10<0in<1000". They also saw additional 
details in the diffracted structure that have not been 
examined theoretically. This paper offers, among 
other results, such an analysis, in the process conclud- 
ing that their results are, in fact, unlikely to have been 
caused by TDS. A similar technique deliberately 
aimed at studying other causes of diffuse scattering 
has recently been developed by Afanas'ev and co- 
workers (Afanas'ev, Koval'chuk, Lobanovich, 
Imamov, Aleksandrov & Melkonyan, 1981). 

A proper theory of X-rays interacting with phonons 
whose q is comparable to the width of the range of 
total reflection of a Bragg peak must include dynami- 
cal effects. Such effects come into play in a number 
of ways. An obvious source arises from the shape of 
the dynamical dispersion surfaces. As shown in Fig. 
2(b), the real part of these dispersion surfaces is 
strongly perturbed in the region of total reflection. 
Hence the value of qo connecting a given set of angles 
(0i,, 0out) is altered when either of these angles is 
close to zero. In addition, the same dynamic effects 
that cause asymmetries in the specularly (elastic) 
reflected intensity in this region can be expected also 
to introduce asymmetries in the X-ray-phonon coup- 
ling. Furthermore, since the final X-ray state, and 
perhaps also the initial state, is a two-field state when 
close to the region of total reflection, appropriate 
boundary conditions have to be observed to ensure 
that the emerging field created by phonon coupling 
arises entirely from an internal source. Finally, among 
other questions that have to be resolved by a con- 
sistent theory is that it is not obvious how, in a 
dynamical scheme, the phonons connect states lying 
on the normal sheet of the dispersion surface with 
states lying on the anomalous one, as implied in Fig. 
2(b). 

We expect that most dynamical contributions will 
alter (3) primarily through a factor f that measures 

| ! 

Ge 220 I/qo (cm} ' 

. 

-I001 -501 501 IOlO 
0 eo,,(s) 

Fig. 1. Kinematic prediction of the l /qo  dependence of the TDS 
intensity vs exit angle 0out, for two fixed angles of incidence 0i, 
of  the symmetric Ge 220 Bragg reflection. All angles are relative 
to the Bragg angle 0B. The curves go into their mirror images 
relative to the vertical axis with sign reversal of 01~. 

the effective relative strength of the X-ray-phonon 
interaction. Hence, the dynamical equivalent of (3) 
- after integrating over all phonon components qy 
perpendicular to the plane of incidence - gives the 
TDS into dqx dq, as proportional to 

H2IFHI2kBT(f / qo)(g2/ v2). (6) 

As already mentioned, (6) differs from (3) not only 
because of the factor f, but also because q0 connecting 
a given pair (0in, 0out) is no longer given by (5), but 
must be obtained from the actual dispersion surface, 
such as in Fig. 2(b). 

The present work builds on earlier discussions 
of some of these questions (e.g. Kainuma 1961; 
O'Connor, 1967; Afanas'ev & Kagan, 1967; 
Afanas'ev, Kagan & Chukovskii, 1968; K6hler, M6hl- 
ing & Peibst, 1974), especially by including consistent 
boundary conditions for phonon-excited modes in a 
systematic treatment based on phonon-coupled X-ray 
modes tied to many-sheeted dynamical dispersion 
surfaces. This characterization becomes particularly 
important in the immediate neighborhood of the 
totally reflecting region. Since the distortions of an 
ideal crystal by thermal phonons are small, the more 
general treatment of scattering in distorted crystals 
by Kuriyama (1972) is not needed here. 

In the following section, we will determine f and 
f/qo for the case when 0i, is large compared to the 
angular width of the Bragg reflection, but for arbitrary 
values of 0out, and indicate the relation of our results 
to the earlier treatments. § 3 compares the theory to 
the EAP and other experiments, and the final section 
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(b) 
Fig. 2. Schematic of first-order TDS selection rules in reciprocal 

space connecting q0, I~, KH and H, (a) with respect to the 
kinematic dispersion surfaces of the 0H reflection, relative to 
the Lorentz point; (b) with respect ot the corresponding dynami- 
cal dispersion surfaces, qo is chosen to connect the same 0in > 0 
and 0out<0 as in (a). 
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discusses additional applications of our results. A 
preliminary account of this work was presented at 
the January 1983 meeting of the American Physical 
Society (Wasserstein-Robbins & Juretschke, 1983). 

2. Theory 
Our starting point is the symmetric two-beam Bragg 
reflection. In terms of the notation of Batterman & 
Cole (1964), it is described, for cr polarization, by 
two scalar equations for the transverse incident and 
reflected field amplitudes Eo, Eu:  

2¢oEo + kFF~  E n  = 0 
(7) 

kFFnEo + 2¢nEn  = O, 

where ~:o and ~:n are the complex changes in magni- 
tode of Ko and Kn from their average value within 
the crystal: 

s e, = (K,. K, ) 1 / 2  __ k(1-½FFo) ( 8 ) 

and F = e2/(eomto2•cen). ~0 and ~:n are related, at a 
given angle of incidence 0in ( = 0out), by 

~o + ~n = 8 = k(iFF'~ - 0in sin 20B). (9) 

If the effect of phonons is described by rigid atomic 
displacements of the form 

N 

U(r )=  Y. uj sin (~ . r -oJ /+~oj ) ,  (10) 
j = l  

the generalization of (7) that includes all exchanges 
of a single q is (e.g. O'Connor, 1967; Afanas'ev et al., 
1968; Krhler et al., 1974; Wasserstein-Robbins, 1982) 

2~:ooEoo + ForfEon 
N • 

= ~" ( e - ' * J F s a E m - e ' ~ F s a E y n )  
j = l  

FonEoo + 2~:onEon 
N 

= - X ( e - %  FjnEjo-  e% FjnE:o) (11 ) 
j = l  

26oEjo + For, ~ ,  = -e'~' Fj~ Eo, 

FonEjo + 2 6 n E j n  = e% FsnEoo 

26oE:o + Fo,~ Ej., = e-'*~ F:, Eo. 

Fo.E:o + 2 6 .  E i .  = - e  -'*~ Fj.Eoo, 

j -- 1 , . . . ,  N, where j and f refer to the absorption of 
qs and its emission - ~ ,  respectively. The set (seoo, seon) 
belongs to the central beam existing even in the 
absence of phonons and, because of momentum con- 
servation, the other sets (~so, ~m) are related to it by 

60 .-~ ~o0"Jl-ajo, ~jH--" ~OH"~ AjH ( 1 2 )  

with 

aso = (~ .  Ko)/k, a m = ( ~ . K n ) / k .  (13) 

To the lowest orders of interaction, the reduced struc- 
ture factors in (11) are given by 

N 

Fort = krFu I-[ Jo(H. urn), 
rn=l 

F m = kFFnJ1 (H. us), (14) 

with Jo and ./1 ordinary Bessel functions, so that Fort 
includes a Debye-Waller-factor correction. 
Equations (11) differ from those given by O'Connor 
(1967) in that the Debye-Waller factor attached to 
Fort in (14) is a natural consequence of including 
back-coupling into the central beam, so that this 
factor need not be introduced separately (see also 
Krhler et al., 1974). In addition, (11) assumes that 
H ~, q, so that all terms proportional to Jl(q. u) are 
omitted, and (H+ q). u is approximated by its main 
term. 

When all F m = 0, (11) represents 2 N +  1 indepen- 
dent symmetric two-beam cases, differing, at a given 
8, by the various angles of incidence defined by their 
respective ~. If only the central beam couples to an 
externally incident field, none of the other modes are 
excited. 

In the presence of coupling terms on the right side, 
each mode in (11) is described by 2 N +  1 field pairs 
(Wasserstein-Robbins, 1982). For example, the mth 
mode consists of the set 

Eoo(m), E o , ( m ) ; . . .  ; Eso(m), 

Esn(m) ;  . . . ; Eio(m), E : n ( m ) ;  . . . .  

However, the structure of (11) shows that all fields 
forj  ~ 0 couple to each other only through the central 
beam. To lowest order, therefore, we can neglect this 
interaction, so that only the mode attached to the 
central beam, rn = 0, retains its full complement of 
fields 

Eoo(0), Eo,(0); . . . ;  Ejo(0), 
Ej , (0 ) ; . . .  ; Ezo(0), E : , ( 0 ) ; . . . ,  

while all other modes reduce back to two-beam cases 
j = m ,  such as [Ejo(j), Ejn(j)]. Hence, all phonons 
can be treated independently and their contributions 
are additive. For the j th  phonon, the reflected field 
E m is therefore given by the sum of only two terms 

Ejn = Ejn(O)+ Ejn(j), (15) 

subject to the condition that there is no net incident 
field associated with this phonon-excited reflected 
field: 

Ejo=0 = Ejo(0) + Ejo(j). (16) 

The four field amplitudes appearing in (15) and (16) 
can be related to Eoo through (11), and lead to the 
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expression for the reflected field 

Era_ 2e % Fju~oo (0) 

Eoo FouFoa 

[ ] 

A similar expression holds for Efn/Eoo. 

(17) 

Here ~oo(0) and ~on (0) refer to the normal branch 
of the central beam and ~o(j) belongs to the normal 
branch of the independent two-beam solution corre- 
sponding to an incident angle O~(j) defined, in 
analogy to (9), by 

6o(j) + 6 , - , ( j )  = ,~ + 40+  Aj. 

=k[iFF'~-O~n(j) sin20~]. (18) 

Through a series of geometrical relations involving 
(12) and (18), (17) can be simplified to the form 

E~H 2e%Fm~oo(0) I ~:on(0)- ~o(j) ] 
Eoo- FonFof~ l 5jo _~-~-_~ i ~  +-~o(0)j, (19) 

leading to a scattered intensity 

E001 41~oH(0)l 2 

[~ :~m(0)  - ~ 5 0 ( j ) ]  2 + [ ~ n ( 0 )  --  ~: j 'o( j )]  2 
X 

[Zjo- ~%(j) + ¢~,o(0)]: + [¢&(0) - E-(J)] :  

(20) 

with primes and double primes designating real and 
imaginary parts. 

Through (9) the incident angle 0i, is fixed by 
[~:00(0), sc0u(0)]. Similarly, through (18) the exit angle 
0o~t(j) [ = 0in(j)] is defined by the set [~o(j), ~n(j)] .  
Hence, (20) provides the scattered intensity due to 
the j th phonon into its 0out, for given 0~,. To find the 
total intensity into a given 0out, we must sum (20) 
over all phonons connecting 0~n to this one output 
angle. 

In carrying out this sum, we make use of two 
convenient aspects of the structure of (20). Firstly, 
since for thermal phonons all the dispersion surfaces 
of interest are independent of ky, the direction normal 
to the plane of incidence, we need consider explicitly 
only tb's in the kx- k~ plane of incidence. The sum 
over the third component, qr, has no dynamical 
aspects, but, as mentioned in § 1, depends only on 
the phonon distribution. Secondly, since for fixed 0~. 
and 0out all the ~:'s in (20) are constant, (20) is only 
a function of the variable A~0 [related to qj through 
(13)], which appears explicitly as well as in ]FmFjA ]. 

As shown in Fig. 3(a), the sum involves all q / s  
originating along the dashed vertical line V, and not 
necessarily only those connecting the dispersion sur- 
faces OH and 00. However, the sum is dominated by 

those terms of (20) for which 

Aio -- ~n  (j) - ~)o(0 ), (21 ) 

as long as ~:~m(0) >> ~:jo(j), which is everywhere except 
when a phonon connects two points within the totally 
reflecting region, i.e. when both 0in and 0out are small. 
Hence, as a function of Ajo, (20) is a Lorentzian 
sharply peaked at the value given by (21). If [Fm~# [ 
is a slowly varying function of Ajo, the integral is 
easily carried out: 

IEm/ Eool 2 dqz 
- - 0 0  

= ~ IEm/Eool2(Oq~/OAo)qx dAo 
- - o 0  

~IFj.F~,~I [~q,.(0)- ~o(j)] 2 + [~:g.(0)- E0(j)] 2 
sin 0s 1¢o-(0)121~go(0)- ~:~(J)l ' 

(22) 

where [ FmFj~ I is evaluated for the dominant phonon 
q~ satisfying (21). Geometrically, the condition (21) 
corresponds to the intersection of the dashed vertical 
line V defining 0out in Fig. 3(a) with the OH sheet, 
i.e. the anomalous sheet of the standard dispersion 
surface. Therefore the construction first indicated in 
Fig. 2(b), based on kinematic momentum conserva- 
tion, is now formally justified. Under the conditions 
specified above with respect to (21), no significant 
contribution to the scattered intensity comes from the 
other intersection where the vertical V crosses the 00 
sheet, even though momentum conservation using 
independent two-beam states is equally satisfied 
there. This indicates that within the approximations 
inherent in our treatment any phonon coupling must 
always involve a Bragg reflection. Equation (22) 
differs from the expression derived by O'Connor 
(1967) for the Bragg case because of boundary condi- 
tions other than the dynamical ones of (15) and (16). 
These differences are particularly important when 
~ou(0) and ~o(j) are close to each other. Similarly, 
(22) differs from the corresponding result of 
Afanas'ev et al. (1968) where the anomalous solution 
of the jth branch was used to satisfy (16). 

The fact that in Fig. 3(a) the coupling appears to 
excite a state on the anomalous branch of the disper- 
sion surface is merely a result of the compact rep- 
resentation of the transition in terms of the central 
sheets 00 and OH of the full dispersion surface of 
2 N +  1 sheets. As shown and explained in Fig. 3(b), 
in the actual state of affairs the (anomalous) jH sheet 
perturbs the (normal) 00 sheet at their intersection, 
to produce a reflection into the Kn direction, com- 
pletely analogous to a weak two-beam interaction. It 
is, of course, only in the representation of Fig. 3(b) 
that the proper boundary conditions on the phonon- 
excited X-rays can be satisfied. The geometrical con- 
struction of Fig. 3(b) also indicates that for given 0i, 
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and 0ou t a phonon q j  is either absorbed or emitted, 
but not both. Hence we are justified in treating either 
EjH(O) or Eyn(O) as large, but not both, in satisfying 
these boundary conditions. 

The last factor in (22) represents the modification 
introduced by the dynamical treatment of X-rays. 
Since for 0out large it approaches asymptotically the 
value 1/8" (8"= kFF'd), we can rewrite it as f /8" ,  with 

f =  8"{[£~H(0)- £Jo(j)] 2 

+ [~:g,(0)-  E~'o(j)]~}llEo,(O)121Ego(O)- ~:jT,(j)l. 
(23) 

Finally, using the first term in the series expansion 
2 of J~ in (14), and the standard relation of uj to kT 

(e.g. James, 1965), and taking into account both the 
absorption and emission of qj and - q  j, respectively, 
we obtain the full expression for the TDS intensity 
into a range d0out for a tr-polarized incident beam at 
0in 

dI(  0in, 0out) = (k~r/a2~p)HE(IF~l~/Fg)k~r(f~/qo) 

×(gEIv2) dOout, (24) 

where p is the mass density of the crystal, f~ is given 

V kz 
° " \  i Iq,,/.oo 

k, 

O0 OH 

(a) 

jH,, I k'Ci~ , jO 
C)H kz(O)~, V O0 . . . . .  i ~ - f q !  

x I ,,1 ~ / / l ~ l . t u ; I /  / " 

- k ~ ( j )  

LA~'~ff-4,,D,_ x,,, -t%(o) I . . . .  

oc) jH 

N ~  

(b) 
Fig. 3. Dynamical N-phonon coupling to X-rays, for the same 01~ 

and 0out as in Fig. 2. (a) Single dispersion surface representation: 
all phonons originating on the vertical V and terminating at the 
tiepoint (~:o0, ~on), such as qs, qJ' and qj,, contribute to the sum 
in (22); (b) multiple dispersion surface representation for the 
dominant phonon qs of (a). The common tiepoint P now corre- 
sponds to both 0in of the mode [Ko0(0), KoH(O), Kjo(0), Kjl-I(O)], 
relative to H, and 0out, relative to H displaced parallel to itself 
by qj. The two-beam mode [Kjo(j), Kill(j)] originating at tie- 
point P' is needed to satisfy (15) and (16). The contribution of 
all phonons is obtained by sliding the (j0, jH) dispersion surface 
along its vertical axis. 

by (23), and the proper expression for qo is 

q2 = (sin E 2 0n)-l{[ ~jH(j) -- ~o(0) ]2 

+ [~Jo(j)-  ~,H(0)] E 

- 2  cos 20B[~zjn(j) - ~o(0)][~:Jo(j) - ~:~H(0)]}. 

(25) 

Equations (24) and (25) are the dynamical 
analogues of (3) and (5), as applied to the symmetric 
two-beam Bragg case, and with an offset in 0i. outside 
the angular range of the main specular reflection, i.e. 
Oi.>> FIF'~l/sin 20a. The extension of these results to 
the other polarization mode is obvious. However, 
because f /qo  is peculiar to each polarization, the 
normal averaging for an unpolarized incident beam 
may not always be used. 

Before relating these results to the EAP and other 
experiments, it should be pointed out that, as expec- 
ted, the dependence of (22) and (24) o n  IFgHl2/Fg) 
identifies TDS as proportional to the typical 
integrated intensity of a weak reflection. This inverse 
dependence on absorption is rarely pointed out 
explicitly in the TDS literature (e.g. Schuster & 
Weymouth, 1971) and appears in a kinematic treat- 
ment only if explicit account is taken of the distance 
into the crystal within which phonon-excited X-rays 
are created and can escape (Schuster, 1969). It is a 
natural formal consequence of any dynamical 
treatment. 

3. Application to an experiment 

An experiment satisfying the general conditions of 
the above theory was carried out by EAP (1972). In 
particular, the angular resolutions of both the incident 
and reflected intensities were such as to allow one, 
in principle, to look at couplings of the very-long- 
wavelength phonons that should show strong dynami- 
cal effects. 

Fig. 4 displays the variation o f f  predicted by (23) 
for the Ge 220 reflection studied by EAP, for incident 
beams at 0i, = +70". The most startling feature of this 
figure is that f decreases to less than 0.1 when 0out 
is within the angular range of the main reflection. 
This indicates that in this range phonon coupling is 
strongly suppressed. The two main physical reasons 
for this behavior, both contained formally in (23), are: 

(a) If the phonon-induced X-ray mode emanates 
from the region of nearly total reflection, it is a 
two-beam mode with En and Eo fields of comparable 
magnitude. But, since this mode has no incident field 
to couple to, /70 cannot exist. Hence, En is also 
suppressed; 

(b) The large primary extinction in this angular 
region reduces the active depth below the crystal 
surface within which the X-ray-phonon interaction 
takes place. 
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The dependence of the X-ray-phonon coupling on 
primary extinction also explains the peak in f on the 
low-angle side of the main reflection, corresponding 
to a Borrmann effect, and the slow increase in f from 
its minimum on the high-angle side with its dispersion 
sheet of larger than average absorption. Finally, the 
increase in f for 0in < 0 relative to its value for Oi, > 0, 
at the same 0o,t, must be ascribed to the differences 
in absorption of the primary beam on the low- and 
high-angle sides. In fact, f reaches its asymptotic 
value of unity only when both 0i. and 0out are several 
hundred seconds away from the origin because of 
these primary extinction effects. 

The very similar looking qualitative graph for the 
quantity corresponding to f given by Afanas'ev et al. 
(1968) indicates that at these relatively large devi- 
ations from the Bragg angle the exact boundary condi- 
tions on the phonon-excited modes are not too impor- 
tant, because ~:oH(0)>> Go(J)- 

Such variations in f have also been discussed for 
X-rays in the symmetric two-beam Bragg geometry 
interacting with intense monochromatic phonons 
moving parallel to the surface (Juretschke & 
Wasserstein-Robbins, 1982). 

Fig. 5 shows the value o f f / qo  resulting from (23) 
and (25) for the same two values of 0i, as used in 
Fig. 4. Since, apart from a constant factor, f / q  is 
proportional to the TDS of (24), it can be compared, 
on the One hand, with the corresponding kinematic 
result of Fig. 1 and, on the other, with the experi- 
mental data of EAP. Figs. 1 and 5 share a common 
overall scale, as well as the characteristic maximum 
on the side of the Bragg angle opposite to 0i.. The 
maximum is shifted to a slightly smaller Oo~t on the 
low-angle side relative to the prediction of (4), 
although this is unlikely to be discernible experi- 
mentally because the maximum is so broad. The same 
is probably true for the slight differences in the wings 
on opposite sides of 0B introduced because f reaches 
its asymptotic value so slowly from either above or 

i i 

Ge 220 / 
-I.5 

f 

~.: - 7 0  s...s_ 
, l.O . - -  

/ ~  O.: 70s 

J 
- I 00  - 5 0  • s 50 I00 

I I l I 

o OoJs) 
Fig. 4. Relative strength of dynamical X-ray phonon coupling f, 

defined by (23), vs Oo,t, for the Ge 220 reflection, at two offset 
angles 0in. 

below unity. The most important new features are 
carded over from the variation of f near the Bragg 
angle in Fig. 4, producing a sharp peak and then a 
deep minimum in a low- to high-angle sweep, regard- 
less of the sign of 0i,. These features have no kinemati- 
cal counterpart. 

The comparison of Fig. 5 with the experimental 
results of EAP must take into account that various 
convolutions over the angular widths of the incident 
beam and over the detector acceptance angle may 
obscure some of the theoretically predicted details. 
Nevertheless, convolutions should not obscure the 
deep minimum around 0out = 0, which is independent 
of Oi,. That it is not seen clearly in Figs. 2(a) and (e) 
of their paper must be ascribed to a lack of resolution 
of experimental points taken more than 5" apart. The 
pronounced difference of their line shapes for 0i, = 
-65" and 0i, = 70" is not contained in the theory 
leading to Fig. 5, although the existence of the sharp 
peak on the low-angle side may give the appearance 
of some broadening for the positive relative to the 
negative 0~,. 

Since EAP's figures also show the elastically scat- 
tered peak at 0o,t = 0i,, on the same scale, we can 
deduce an absolute magnitude of the observed inelas- 
tic scattering. At 0i, = - 7 0 " ,  the elastic peak has a 
theoretical maximum of 1.54 x 10 -3. From EAP's Fig. 
2, therefore, the experimental inelastic peaks have a 
maximum close to 4 x 10 -4. After deconvoluting this 
intensity over an assumed 10" width of the input beam, 
we expect that an inelastic peak intensity of 4 x  
10-5(") -~ should be compared to the prediction of 
(24). 

With representative values for the Ge 220 reflection 
and Cu Ka radiation, the constant factor in (24) at 
T =  300 K is 3.02 x 109 cm S-2(") -~. The value of 
(g2/v2) depends on the orientation of the plane of 
incidence with respect to crystal axes. It can be shown 
to have an average value of 8.25 x 10 -12 (cm s-l) -2, 
with a variation up to +40% (Wasserstein-Robbins, 
1982). With a typical value o f f / q o  = 10 -5 cm at the 
peak position, the prediction of (24) for the peak 
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Fig. 5. Relative dynamical TDS structure f /qo ,  based on (23) and 
(25), for the conditions of Fig. 4. This is the dynamical equivalent 
of Fig. 1. 
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TDS is 2.5 × 10-7(") -l. This is more than two orders 
of magnitude below the peak seen by EAP. We there- 
fore conclude that the observed peak is not caused 
by TDS, but must be due to other deviations from 
periodicity in the surface region of the crystal that 
have a similar Fourier spectrum as phonons. Since 
phonons are so slow, X-ray scattering at one tem- 
perature cannot distinguish between phonons and, 
for example, such static imperfections. A similar con- 
clusion, based on corresponding experiments on Si, 
was reached by Iida & Kohra (1979). It should also 
be kept in mind that the position of the peak is 
relatively insensitive to the actual Fourier spectrum, 
and only requires that the diffusely scattered intensity 
increases as q approaches its minimum cut-off for 
connecting two sheets of the dispersion surface at the 
given angle of incidence. For example, Afanas'ev et 
al. (1981) derive the same peak condition (4) for 
independently scattering small clusters of impurities 
in the surface region. 

4. Discussion 

Neither Eisenberger et al. (1972) nor Iida & Kohra 
(1979) were able to see the inelastic scattering features 
predicted by Fig. 5 near 0out=0. This is largely 
because the tails of their elastically scattered Bragg 
peak, centered at 0ou t = 0in , extend into the region 
near 0o,t = 0 even though grooved crystals, with two 
and five reflections, respectively, were used in order 
to suppress these tails of the incident beam. Iida & 
Kohra (1979) ascribe the residual elastic peak seen 
at 0o,t = 0 to inelastic scattering processes in the 
grooved-crystal surfaces, which keep the tail 
intensities of the beam incident on the sample sub- 
stantially above theoretical expectations (Bonse & 
Hart, 1965). Until incident beams can be better 
defined, therefore, it will be difficult to substantiate 
the dynamical features of Fig. 5 in experiments that 
concentrate on very long phonons that require very 
small 0in. 

However, one of the remarkable properties of the 
dip in intensity of Fig. 5 is that it always remains 
centered around 0out = 0, regardless of the value of 
0in. Hence, if 0in is sufficiently large so that the 
incident beam produces no elastic scattering at 0o~t = 
0, the dip should be observable. Furthermore, because 
the dip is stationary, the angular resolution of the 
incident beam should not be an issue. Precisely this 
behavior has recently been reported (Kashiwase, 
Kainuma & Minoura, 1982) for incident X-ray beams 
more than 2 ° away from the Bragg angle. They 
ascribe the observed defect line normal to the plane 
of incidence to Bragg scattering of TDS. Wilkins, 
Chadderton & Smith (1983) concur in this general 
explanation, and embed it in the general formulation 
of the Kikuchi effects well known in electron diffrac- 
tion. They also review earlier explanations of the 

observed defect lines, mostly seen in y-ray scattering 
where elastic and inelastic processes are easily sepa- 
rated, and they explore the geometrical aspects of 
detecting the dips, as well as of using them in orienting 
crystals. Their conclusions are compatible with the 
dynamical theory presented here. 

It should be mentioned, finally, that in both y-ray 
and X-ray scattering such a defect line in the inelastic 
scattering is often also seen when 0in = 0. Without 
question, this phenomenon has a similar dynamical 
origin to the effects treated here. However, in that 
case the theory of § 2 has to be modified, because 
several of its assumptions, such as the sharpness of 
the Lorentzian peak about the kinematic conservation 
of momentum, and the restriction to transitions 
involving either absorption or emission of a particular 
phonon, have to be re-examined. In addition, the 
observed signal is evidently a convolution over the 
angular width of the incident beam, and it is not 
obvious that in this region also the location and shape 
of the dip is independent of 0in. The extended theory 
for this case is the subject of the following paper 
(Juretschke, 1985). 

We gratefully acknowledge correspondence with 
S. L. Schuster, and helpful discussions with N. G. 
Alexandropoulos. 
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